pyarrow.RecordBatch#
- class pyarrow.RecordBatch#
Bases:
_Tabular
Batch of rows of columns of equal length
Warning
Do not call this class’s constructor directly, use one of the
RecordBatch.from_*
functions instead.Examples
>>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> names = ["n_legs", "animals"]
Constructing a RecordBatch from arrays:
>>> pa.RecordBatch.from_arrays([n_legs, animals], names=names) pyarrow.RecordBatch n_legs: int64 animals: string ---- n_legs: [2,2,4,4,5,100] animals: ["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"] >>> pa.RecordBatch.from_arrays([n_legs, animals], names=names).to_pandas() n_legs animals 0 2 Flamingo 1 2 Parrot 2 4 Dog 3 4 Horse 4 5 Brittle stars 5 100 Centipede
Constructing a RecordBatch from pandas DataFrame:
>>> import pandas as pd >>> df = pd.DataFrame({'year': [2020, 2022, 2021, 2022], ... 'month': [3, 5, 7, 9], ... 'day': [1, 5, 9, 13], ... 'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> pa.RecordBatch.from_pandas(df) pyarrow.RecordBatch year: int64 month: int64 day: int64 n_legs: int64 animals: string ---- year: [2020,2022,2021,2022] month: [3,5,7,9] day: [1,5,9,13] n_legs: [2,4,5,100] animals: ["Flamingo","Horse","Brittle stars","Centipede"] >>> pa.RecordBatch.from_pandas(df).to_pandas() year month day n_legs animals 0 2020 3 1 2 Flamingo 1 2022 5 5 4 Horse 2 2021 7 9 5 Brittle stars 3 2022 9 13 100 Centipede
Constructing a RecordBatch from pylist:
>>> pylist = [{'n_legs': 2, 'animals': 'Flamingo'}, ... {'n_legs': 4, 'animals': 'Dog'}] >>> pa.RecordBatch.from_pylist(pylist).to_pandas() n_legs animals 0 2 Flamingo 1 4 Dog
You can also construct a RecordBatch using
pyarrow.record_batch()
:>>> pa.record_batch([n_legs, animals], names=names).to_pandas() n_legs animals 0 2 Flamingo 1 2 Parrot 2 4 Dog 3 4 Horse 4 5 Brittle stars 5 100 Centipede
>>> pa.record_batch(df) pyarrow.RecordBatch year: int64 month: int64 day: int64 n_legs: int64 animals: string ---- year: [2020,2022,2021,2022] month: [3,5,7,9] day: [1,5,9,13] n_legs: [2,4,5,100] animals: ["Flamingo","Horse","Brittle stars","Centipede"]
- __init__(*args, **kwargs)#
Methods
__init__
(*args, **kwargs)add_column
(self, int i, field_, column)Add column to RecordBatch at position i.
append_column
(self, field_, column)Append column at end of columns.
cast
(self, Schema target_schema[, safe, options])Cast record batch values to another schema.
column
(self, i)Select single column from Table or RecordBatch.
copy_to
(self, destination)Copy the entire RecordBatch to destination device.
drop_columns
(self, columns)Drop one or more columns and return a new Table or RecordBatch.
drop_null
(self)Remove rows that contain missing values from a Table or RecordBatch.
equals
(self, other, bool check_metadata=False)Check if contents of two record batches are equal.
field
(self, i)Select a schema field by its column name or numeric index.
filter
(self, mask[, null_selection_behavior])Select rows from the table or record batch based on a boolean mask.
from_arrays
(list arrays[, names, schema, ...])Construct a RecordBatch from multiple pyarrow.Arrays
from_pandas
(cls, df, Schema schema=None[, ...])Convert pandas.DataFrame to an Arrow RecordBatch
from_pydict
(cls, mapping[, schema, metadata])Construct a Table or RecordBatch from Arrow arrays or columns.
from_pylist
(cls, mapping[, schema, metadata])Construct a Table or RecordBatch from list of rows / dictionaries.
from_struct_array
(StructArray struct_array)Construct a RecordBatch from a StructArray.
get_total_buffer_size
(self)The sum of bytes in each buffer referenced by the record batch
itercolumns
(self)Iterator over all columns in their numerical order.
remove_column
(self, int i)Create new RecordBatch with the indicated column removed.
rename_columns
(self, names)Create new record batch with columns renamed to provided names.
replace_schema_metadata
(self[, metadata])Create shallow copy of record batch by replacing schema key-value metadata with the indicated new metadata (which may be None, which deletes any existing metadata
select
(self, columns)Select columns of the RecordBatch.
serialize
(self[, memory_pool])Write RecordBatch to Buffer as encapsulated IPC message, which does not include a Schema.
set_column
(self, int i, field_, column)Replace column in RecordBatch at position.
slice
(self[, offset, length])Compute zero-copy slice of this RecordBatch
sort_by
(self, sorting, **kwargs)Sort the Table or RecordBatch by one or multiple columns.
take
(self, indices)Select rows from a Table or RecordBatch.
to_pandas
(self[, memory_pool, categories, ...])Convert to a pandas-compatible NumPy array or DataFrame, as appropriate
to_pydict
(self)Convert the Table or RecordBatch to a dict or OrderedDict.
to_pylist
(self)Convert the Table or RecordBatch to a list of rows / dictionaries.
to_string
(self, *[, show_metadata, preview_cols])Return human-readable string representation of Table or RecordBatch.
to_struct_array
(self)Convert to a struct array.
to_tensor
(self, bool null_to_nan=False, ...)Convert to a
Tensor
.validate
(self, *[, full])Perform validation checks.
Attributes
Names of the Table or RecordBatch columns.
List of all columns in numerical order.
The device type where the arrays in the RecordBatch reside.
Whether the RecordBatch's arrays are CPU-accessible.
Total number of bytes consumed by the elements of the record batch.
Number of columns
Number of rows
Schema of the RecordBatch and its columns
Dimensions of the table or record batch: (#rows, #columns).
- __dataframe__(self, nan_as_null: bool = False, allow_copy: bool = True)#
Return the dataframe interchange object implementing the interchange protocol.
- Parameters:
- Returns:
DataFrame
interchange
objectThe object which consuming library can use to ingress the dataframe.
Notes
Details on the interchange protocol: https://data-apis.org/dataframe-protocol/latest/index.html nan_as_null currently has no effect; once support for nullable extension dtypes is added, this value should be propagated to columns.
- add_column(self, int i, field_, column)#
Add column to RecordBatch at position i.
A new record batch is returned with the column added, the original record batch object is left unchanged.
- Parameters:
- Returns:
RecordBatch
New record batch with the passed column added.
Examples
>>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> batch = pa.RecordBatch.from_pandas(df)
Add column:
>>> year = [2021, 2022, 2019, 2021] >>> batch.add_column(0,"year", year) pyarrow.RecordBatch year: int64 n_legs: int64 animals: string ---- year: [2021,2022,2019,2021] n_legs: [2,4,5,100] animals: ["Flamingo","Horse","Brittle stars","Centipede"]
Original record batch is left unchanged:
>>> batch pyarrow.RecordBatch n_legs: int64 animals: string ---- n_legs: [2,4,5,100] animals: ["Flamingo","Horse","Brittle stars","Centipede"]
- append_column(self, field_, column)#
Append column at end of columns.
- Parameters:
- Returns:
Table
orRecordBatch
New table or record batch with the passed column added.
Examples
>>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df)
Append column at the end:
>>> year = [2021, 2022, 2019, 2021] >>> table.append_column('year', [year]) pyarrow.Table n_legs: int64 animals: string year: int64 ---- n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]] year: [[2021,2022,2019,2021]]
- cast(self, Schema target_schema, safe=None, options=None)#
Cast record batch values to another schema.
- Parameters:
- Returns:
Examples
>>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> batch = pa.RecordBatch.from_pandas(df) >>> batch.schema n_legs: int64 animals: string -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, ...
Define new schema and cast batch values:
>>> my_schema = pa.schema([ ... pa.field('n_legs', pa.duration('s')), ... pa.field('animals', pa.string())] ... ) >>> batch.cast(target_schema=my_schema) pyarrow.RecordBatch n_legs: duration[s] animals: string ---- n_legs: [2,4,5,100] animals: ["Flamingo","Horse","Brittle stars","Centipede"]
- column(self, i)#
Select single column from Table or RecordBatch.
- Parameters:
- Returns:
- column
Array
(for
RecordBatch
) orChunkedArray
(for
Table
)
- column
Examples
Table (works similarly for RecordBatch)
>>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df)
Select a column by numeric index:
>>> table.column(0) <pyarrow.lib.ChunkedArray object at ...> [ [ 2, 4, 5, 100 ] ]
Select a column by its name:
>>> table.column("animals") <pyarrow.lib.ChunkedArray object at ...> [ [ "Flamingo", "Horse", "Brittle stars", "Centipede" ] ]
- column_names#
Names of the Table or RecordBatch columns.
Examples
Table (works similarly for RecordBatch)
>>> import pyarrow as pa >>> table = pa.Table.from_arrays([[2, 4, 5, 100], ... ["Flamingo", "Horse", "Brittle stars", "Centipede"]], ... names=['n_legs', 'animals']) >>> table.column_names ['n_legs', 'animals']
- columns#
List of all columns in numerical order.
- Returns:
- columns
list
ofArray
(for
RecordBatch
) orlist
ofChunkedArray
(for
Table
)
- columns
Examples
Table (works similarly for RecordBatch)
>>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [None, 4, 5, None], ... 'animals': ["Flamingo", "Horse", None, "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> table.columns [<pyarrow.lib.ChunkedArray object at ...> [ [ null, 4, 5, null ] ], <pyarrow.lib.ChunkedArray object at ...> [ [ "Flamingo", "Horse", null, "Centipede" ] ]]
- copy_to(self, destination)#
Copy the entire RecordBatch to destination device.
This copies each column of the record batch to create a new record batch where all underlying buffers for the columns have been copied to the destination MemoryManager.
- Parameters:
- destination
pyarrow.MemoryManager
orpyarrow.Device
The destination device to copy the array to.
- destination
- Returns:
- device_type#
The device type where the arrays in the RecordBatch reside.
- Returns:
DeviceAllocationType
- drop_columns(self, columns)#
Drop one or more columns and return a new Table or RecordBatch.
- Parameters:
- Returns:
Table
orRecordBatch
A tabular object without the column(s).
- Raises:
KeyError
If any of the passed column names do not exist.
Examples
Table (works similarly for RecordBatch)
>>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df)
Drop one column:
>>> table.drop_columns("animals") pyarrow.Table n_legs: int64 ---- n_legs: [[2,4,5,100]]
Drop one or more columns:
>>> table.drop_columns(["n_legs", "animals"]) pyarrow.Table ... ----
- drop_null(self)#
Remove rows that contain missing values from a Table or RecordBatch.
See
pyarrow.compute.drop_null()
for full usage.- Returns:
Table
orRecordBatch
A tabular object with the same schema, with rows containing no missing values.
Examples
Table (works similarly for RecordBatch)
>>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'year': [None, 2022, 2019, 2021], ... 'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", None, "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> table.drop_null() pyarrow.Table year: double n_legs: int64 animals: string ---- year: [[2022,2021]] n_legs: [[4,100]] animals: [["Horse","Centipede"]]
- equals(self, other, bool check_metadata=False)#
Check if contents of two record batches are equal.
- Parameters:
- other
pyarrow.RecordBatch
RecordBatch to compare against.
- check_metadatabool, default
False
Whether schema metadata equality should be checked as well.
- other
- Returns:
- are_equalbool
Examples
>>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> batch = pa.RecordBatch.from_arrays([n_legs, animals], ... names=["n_legs", "animals"]) >>> batch_0 = pa.record_batch([]) >>> batch_1 = pa.RecordBatch.from_arrays([n_legs, animals], ... names=["n_legs", "animals"], ... metadata={"n_legs": "Number of legs per animal"}) >>> batch.equals(batch) True >>> batch.equals(batch_0) False >>> batch.equals(batch_1) True >>> batch.equals(batch_1, check_metadata=True) False
- field(self, i)#
Select a schema field by its column name or numeric index.
Examples
Table (works similarly for RecordBatch)
>>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> table.field(0) pyarrow.Field<n_legs: int64> >>> table.field(1) pyarrow.Field<animals: string>
- filter(self, mask, null_selection_behavior='drop')#
Select rows from the table or record batch based on a boolean mask.
The Table can be filtered based on a mask, which will be passed to
pyarrow.compute.filter()
to perform the filtering, or it can be filtered through a booleanExpression
- Parameters:
- mask
Array
orarray-like
orExpression
The boolean mask or the
Expression
to filter the table with.- null_selection_behavior
str
, default “drop” How nulls in the mask should be handled, does nothing if an
Expression
is used.
- mask
- Returns:
- filtered
Table
orRecordBatch
A tabular object of the same schema, with only the rows selected by applied filtering
- filtered
Examples
Using a Table (works similarly for RecordBatch):
>>> import pyarrow as pa >>> table = pa.table({'year': [2020, 2022, 2019, 2021], ... 'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]})
Define an expression and select rows:
>>> import pyarrow.compute as pc >>> expr = pc.field("year") <= 2020 >>> table.filter(expr) pyarrow.Table year: int64 n_legs: int64 animals: string ---- year: [[2020,2019]] n_legs: [[2,5]] animals: [["Flamingo","Brittle stars"]]
Define a mask and select rows:
>>> mask=[True, True, False, None] >>> table.filter(mask) pyarrow.Table year: int64 n_legs: int64 animals: string ---- year: [[2020,2022]] n_legs: [[2,4]] animals: [["Flamingo","Horse"]] >>> table.filter(mask, null_selection_behavior='emit_null') pyarrow.Table year: int64 n_legs: int64 animals: string ---- year: [[2020,2022,null]] n_legs: [[2,4,null]] animals: [["Flamingo","Horse",null]]
- static from_arrays(list arrays, names=None, schema=None, metadata=None)#
Construct a RecordBatch from multiple pyarrow.Arrays
- Parameters:
- arrays
list
ofpyarrow.Array
One for each field in RecordBatch
- names
list
ofstr
, optional Names for the batch fields. If not passed, schema must be passed
- schema
Schema
, defaultNone
Schema for the created batch. If not passed, names must be passed
- metadata
dict
or Mapping, defaultNone
Optional metadata for the schema (if inferred).
- arrays
- Returns:
Examples
>>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> names = ["n_legs", "animals"]
Construct a RecordBatch from pyarrow Arrays using names:
>>> pa.RecordBatch.from_arrays([n_legs, animals], names=names) pyarrow.RecordBatch n_legs: int64 animals: string ---- n_legs: [2,2,4,4,5,100] animals: ["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"] >>> pa.RecordBatch.from_arrays([n_legs, animals], names=names).to_pandas() n_legs animals 0 2 Flamingo 1 2 Parrot 2 4 Dog 3 4 Horse 4 5 Brittle stars 5 100 Centipede
Construct a RecordBatch from pyarrow Arrays using schema:
>>> my_schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())], ... metadata={"n_legs": "Number of legs per animal"}) >>> pa.RecordBatch.from_arrays([n_legs, animals], schema=my_schema).to_pandas() n_legs animals 0 2 Flamingo 1 2 Parrot 2 4 Dog 3 4 Horse 4 5 Brittle stars 5 100 Centipede >>> pa.RecordBatch.from_arrays([n_legs, animals], schema=my_schema).schema n_legs: int64 animals: string -- schema metadata -- n_legs: 'Number of legs per animal'
- classmethod from_pandas(cls, df, Schema schema=None, preserve_index=None, nthreads=None, columns=None)#
Convert pandas.DataFrame to an Arrow RecordBatch
- Parameters:
- df
pandas.DataFrame
- schema
pyarrow.Schema
, optional The expected schema of the RecordBatch. This can be used to indicate the type of columns if we cannot infer it automatically. If passed, the output will have exactly this schema. Columns specified in the schema that are not found in the DataFrame columns or its index will raise an error. Additional columns or index levels in the DataFrame which are not specified in the schema will be ignored.
- preserve_indexbool, optional
Whether to store the index as an additional column in the resulting
RecordBatch
. The default of None will store the index as a column, except for RangeIndex which is stored as metadata only. Usepreserve_index=True
to force it to be stored as a column.- nthreads
int
, defaultNone
If greater than 1, convert columns to Arrow in parallel using indicated number of threads. By default, this follows
pyarrow.cpu_count()
(may use up to system CPU count threads).- columns
list
, optional List of column to be converted. If None, use all columns.
- df
- Returns:
Examples
>>> import pandas as pd >>> df = pd.DataFrame({'year': [2020, 2022, 2021, 2022], ... 'month': [3, 5, 7, 9], ... 'day': [1, 5, 9, 13], ... 'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]})
Convert pandas DataFrame to RecordBatch:
>>> import pyarrow as pa >>> pa.RecordBatch.from_pandas(df) pyarrow.RecordBatch year: int64 month: int64 day: int64 n_legs: int64 animals: string ---- year: [2020,2022,2021,2022] month: [3,5,7,9] day: [1,5,9,13] n_legs: [2,4,5,100] animals: ["Flamingo","Horse","Brittle stars","Centipede"]
Convert pandas DataFrame to RecordBatch using schema:
>>> my_schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())], ... metadata={"n_legs": "Number of legs per animal"}) >>> pa.RecordBatch.from_pandas(df, schema=my_schema) pyarrow.RecordBatch n_legs: int64 animals: string ---- n_legs: [2,4,5,100] animals: ["Flamingo","Horse","Brittle stars","Centipede"]
Convert pandas DataFrame to RecordBatch specifying columns:
>>> pa.RecordBatch.from_pandas(df, columns=["n_legs"]) pyarrow.RecordBatch n_legs: int64 ---- n_legs: [2,4,5,100]
- classmethod from_pydict(cls, mapping, schema=None, metadata=None)#
Construct a Table or RecordBatch from Arrow arrays or columns.
- Parameters:
- Returns:
Table
orRecordBatch
Examples
Table (works similarly for RecordBatch)
>>> import pyarrow as pa >>> n_legs = pa.array([2, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Horse", "Brittle stars", "Centipede"]) >>> pydict = {'n_legs': n_legs, 'animals': animals}
Construct a Table from a dictionary of arrays:
>>> pa.Table.from_pydict(pydict) pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,4,5,100]] animals: [["Flamingo","Horse","Brittle stars","Centipede"]] >>> pa.Table.from_pydict(pydict).schema n_legs: int64 animals: string
Construct a Table from a dictionary of arrays with metadata:
>>> my_metadata={"n_legs": "Number of legs per animal"} >>> pa.Table.from_pydict(pydict, metadata=my_metadata).schema n_legs: int64 animals: string -- schema metadata -- n_legs: 'Number of legs per animal'
Construct a Table from a dictionary of arrays with pyarrow schema:
>>> my_schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())], ... metadata={"n_legs": "Number of legs per animal"}) >>> pa.Table.from_pydict(pydict, schema=my_schema).schema n_legs: int64 animals: string -- schema metadata -- n_legs: 'Number of legs per animal'
- classmethod from_pylist(cls, mapping, schema=None, metadata=None)#
Construct a Table or RecordBatch from list of rows / dictionaries.
- Parameters:
- Returns:
Table
orRecordBatch
Examples
Table (works similarly for RecordBatch)
>>> import pyarrow as pa >>> pylist = [{'n_legs': 2, 'animals': 'Flamingo'}, ... {'n_legs': 4, 'animals': 'Dog'}]
Construct a Table from a list of rows:
>>> pa.Table.from_pylist(pylist) pyarrow.Table n_legs: int64 animals: string ---- n_legs: [[2,4]] animals: [["Flamingo","Dog"]]
Construct a Table from a list of rows with metadata:
>>> my_metadata={"n_legs": "Number of legs per animal"} >>> pa.Table.from_pylist(pylist, metadata=my_metadata).schema n_legs: int64 animals: string -- schema metadata -- n_legs: 'Number of legs per animal'
Construct a Table from a list of rows with pyarrow schema:
>>> my_schema = pa.schema([ ... pa.field('n_legs', pa.int64()), ... pa.field('animals', pa.string())], ... metadata={"n_legs": "Number of legs per animal"}) >>> pa.Table.from_pylist(pylist, schema=my_schema).schema n_legs: int64 animals: string -- schema metadata -- n_legs: 'Number of legs per animal'
- static from_struct_array(StructArray struct_array)#
Construct a RecordBatch from a StructArray.
Each field in the StructArray will become a column in the resulting
RecordBatch
.- Parameters:
- struct_array
StructArray
Array to construct the record batch from.
- struct_array
- Returns:
Examples
>>> import pyarrow as pa >>> struct = pa.array([{'n_legs': 2, 'animals': 'Parrot'}, ... {'year': 2022, 'n_legs': 4}]) >>> pa.RecordBatch.from_struct_array(struct).to_pandas() animals n_legs year 0 Parrot 2 NaN 1 None 4 2022.0
- get_total_buffer_size(self)#
The sum of bytes in each buffer referenced by the record batch
An array may only reference a portion of a buffer. This method will overestimate in this case and return the byte size of the entire buffer.
If a buffer is referenced multiple times then it will only be counted once.
Examples
>>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> batch = pa.RecordBatch.from_arrays([n_legs, animals], ... names=["n_legs", "animals"]) >>> batch.get_total_buffer_size() 120
- is_cpu#
Whether the RecordBatch’s arrays are CPU-accessible.
- itercolumns(self)#
Iterator over all columns in their numerical order.
- Yields:
Array
(for
RecordBatch
) orChunkedArray
(for
Table
)
Examples
Table (works similarly for RecordBatch)
>>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [None, 4, 5, None], ... 'animals': ["Flamingo", "Horse", None, "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> for i in table.itercolumns(): ... print(i.null_count) ... 2 1
- nbytes#
Total number of bytes consumed by the elements of the record batch.
In other words, the sum of bytes from all buffer ranges referenced.
Unlike get_total_buffer_size this method will account for array offsets.
If buffers are shared between arrays then the shared portion will only be counted multiple times.
The dictionary of dictionary arrays will always be counted in their entirety even if the array only references a portion of the dictionary.
Examples
>>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> batch = pa.RecordBatch.from_arrays([n_legs, animals], ... names=["n_legs", "animals"]) >>> batch.nbytes 116
- num_columns#
Number of columns
- Returns:
Examples
>>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> batch = pa.RecordBatch.from_arrays([n_legs, animals], ... names=["n_legs", "animals"]) >>> batch.num_columns 2
- num_rows#
Number of rows
Due to the definition of a RecordBatch, all columns have the same number of rows.
- Returns:
Examples
>>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> batch = pa.RecordBatch.from_arrays([n_legs, animals], ... names=["n_legs", "animals"]) >>> batch.num_rows 6
- remove_column(self, int i)#
Create new RecordBatch with the indicated column removed.
Examples
>>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> batch = pa.RecordBatch.from_pandas(df) >>> batch.remove_column(1) pyarrow.RecordBatch n_legs: int64 ---- n_legs: [2,4,5,100]
- rename_columns(self, names)#
Create new record batch with columns renamed to provided names.
- Parameters:
- names
list
[str
] ordict
[str
,str
] List of new column names or mapping of old column names to new column names.
If a mapping of old to new column names is passed, then all columns which are found to match a provided old column name will be renamed to the new column name. If any column names are not found in the mapping, a KeyError will be raised.
- names
- Returns:
- Raises:
KeyError
If any of the column names passed in the names mapping do not exist.
Examples
>>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> batch = pa.RecordBatch.from_pandas(df) >>> new_names = ["n", "name"] >>> batch.rename_columns(new_names) pyarrow.RecordBatch n: int64 name: string ---- n: [2,4,5,100] name: ["Flamingo","Horse","Brittle stars","Centipede"] >>> new_names = {"n_legs": "n", "animals": "name"} >>> batch.rename_columns(new_names) pyarrow.RecordBatch n: int64 name: string ---- n: [2,4,5,100] name: ["Flamingo","Horse","Brittle stars","Centipede"]
- replace_schema_metadata(self, metadata=None)#
Create shallow copy of record batch by replacing schema key-value metadata with the indicated new metadata (which may be None, which deletes any existing metadata
- Parameters:
- Returns:
- shallow_copy
RecordBatch
- shallow_copy
Examples
>>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100])
Constructing a RecordBatch with schema and metadata:
>>> my_schema = pa.schema([ ... pa.field('n_legs', pa.int64())], ... metadata={"n_legs": "Number of legs per animal"}) >>> batch = pa.RecordBatch.from_arrays([n_legs], schema=my_schema) >>> batch.schema n_legs: int64 -- schema metadata -- n_legs: 'Number of legs per animal'
Shallow copy of a RecordBatch with deleted schema metadata:
>>> batch.replace_schema_metadata().schema n_legs: int64
- schema#
Schema of the RecordBatch and its columns
- Returns:
Examples
>>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> batch = pa.RecordBatch.from_arrays([n_legs, animals], ... names=["n_legs", "animals"]) >>> batch.schema n_legs: int64 animals: string
- select(self, columns)#
Select columns of the RecordBatch.
Returns a new RecordBatch with the specified columns, and metadata preserved.
- Parameters:
- columnslist-like
The column names or integer indices to select.
- Returns:
Examples
>>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> batch = pa.record_batch([n_legs, animals], ... names=["n_legs", "animals"])
Select columns my indices:
>>> batch.select([1]) pyarrow.RecordBatch animals: string ---- animals: ["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"]
Select columns by names:
>>> batch.select(["n_legs"]) pyarrow.RecordBatch n_legs: int64 ---- n_legs: [2,2,4,4,5,100]
- serialize(self, memory_pool=None)#
Write RecordBatch to Buffer as encapsulated IPC message, which does not include a Schema.
To reconstruct a RecordBatch from the encapsulated IPC message Buffer returned by this function, a Schema must be passed separately. See Examples.
- Parameters:
- memory_pool
MemoryPool
, defaultNone
Uses default memory pool if not specified
- memory_pool
- Returns:
- serialized
Buffer
- serialized
Examples
>>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> batch = pa.RecordBatch.from_arrays([n_legs, animals], ... names=["n_legs", "animals"]) >>> buf = batch.serialize() >>> buf <pyarrow.Buffer address=0x... size=... is_cpu=True is_mutable=True>
Reconstruct RecordBatch from IPC message Buffer and original Schema
>>> pa.ipc.read_record_batch(buf, batch.schema) pyarrow.RecordBatch n_legs: int64 animals: string ---- n_legs: [2,2,4,4,5,100] animals: ["Flamingo","Parrot","Dog","Horse","Brittle stars","Centipede"]
- set_column(self, int i, field_, column)#
Replace column in RecordBatch at position.
- Parameters:
- Returns:
RecordBatch
New record batch with the passed column set.
Examples
>>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> batch = pa.RecordBatch.from_pandas(df)
Replace a column:
>>> year = [2021, 2022, 2019, 2021] >>> batch.set_column(1,'year', year) pyarrow.RecordBatch n_legs: int64 year: int64 ---- n_legs: [2,4,5,100] year: [2021,2022,2019,2021]
- shape#
Dimensions of the table or record batch: (#rows, #columns).
Examples
>>> import pyarrow as pa >>> table = pa.table({'n_legs': [None, 4, 5, None], ... 'animals': ["Flamingo", "Horse", None, "Centipede"]}) >>> table.shape (4, 2)
- slice(self, offset=0, length=None)#
Compute zero-copy slice of this RecordBatch
- Parameters:
- Returns:
- sliced
RecordBatch
- sliced
Examples
>>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> batch = pa.RecordBatch.from_arrays([n_legs, animals], ... names=["n_legs", "animals"]) >>> batch.to_pandas() n_legs animals 0 2 Flamingo 1 2 Parrot 2 4 Dog 3 4 Horse 4 5 Brittle stars 5 100 Centipede >>> batch.slice(offset=3).to_pandas() n_legs animals 0 4 Horse 1 5 Brittle stars 2 100 Centipede >>> batch.slice(length=2).to_pandas() n_legs animals 0 2 Flamingo 1 2 Parrot >>> batch.slice(offset=3, length=1).to_pandas() n_legs animals 0 4 Horse
- sort_by(self, sorting, **kwargs)#
Sort the Table or RecordBatch by one or multiple columns.
- Parameters:
- Returns:
Table
orRecordBatch
A new tabular object sorted according to the sort keys.
Examples
Table (works similarly for RecordBatch)
>>> import pandas as pd >>> import pyarrow as pa >>> df = pd.DataFrame({'year': [2020, 2022, 2021, 2022, 2019, 2021], ... 'n_legs': [2, 2, 4, 4, 5, 100], ... 'animal': ["Flamingo", "Parrot", "Dog", "Horse", ... "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> table.sort_by('animal') pyarrow.Table year: int64 n_legs: int64 animal: string ---- year: [[2019,2021,2021,2020,2022,2022]] n_legs: [[5,100,4,2,4,2]] animal: [["Brittle stars","Centipede","Dog","Flamingo","Horse","Parrot"]]
- take(self, indices)#
Select rows from a Table or RecordBatch.
See
pyarrow.compute.take()
for full usage.- Parameters:
- indices
Array
orarray-like
The indices in the tabular object whose rows will be returned.
- indices
- Returns:
Table
orRecordBatch
A tabular object with the same schema, containing the taken rows.
Examples
Table (works similarly for RecordBatch)
>>> import pyarrow as pa >>> import pandas as pd >>> df = pd.DataFrame({'year': [2020, 2022, 2019, 2021], ... 'n_legs': [2, 4, 5, 100], ... 'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]}) >>> table = pa.Table.from_pandas(df) >>> table.take([1,3]) pyarrow.Table year: int64 n_legs: int64 animals: string ---- year: [[2022,2021]] n_legs: [[4,100]] animals: [["Horse","Centipede"]]
- to_pandas(self, memory_pool=None, categories=None, bool strings_to_categorical=False, bool zero_copy_only=False, bool integer_object_nulls=False, bool date_as_object=True, bool timestamp_as_object=False, bool use_threads=True, bool deduplicate_objects=True, bool ignore_metadata=False, bool safe=True, bool split_blocks=False, bool self_destruct=False, unicode maps_as_pydicts=None, types_mapper=None, bool coerce_temporal_nanoseconds=False)#
Convert to a pandas-compatible NumPy array or DataFrame, as appropriate
- Parameters:
- memory_pool
MemoryPool
, defaultNone
Arrow MemoryPool to use for allocations. Uses the default memory pool if not passed.
- categories
list
, defaultempty
List of fields that should be returned as pandas.Categorical. Only applies to table-like data structures.
- strings_to_categoricalbool, default
False
Encode string (UTF8) and binary types to pandas.Categorical.
- zero_copy_onlybool, default
False
Raise an ArrowException if this function call would require copying the underlying data.
- integer_object_nullsbool, default
False
Cast integers with nulls to objects
- date_as_objectbool, default
True
Cast dates to objects. If False, convert to datetime64 dtype with the equivalent time unit (if supported). Note: in pandas version < 2.0, only datetime64[ns] conversion is supported.
- timestamp_as_objectbool, default
False
Cast non-nanosecond timestamps (np.datetime64) to objects. This is useful in pandas version 1.x if you have timestamps that don’t fit in the normal date range of nanosecond timestamps (1678 CE-2262 CE). Non-nanosecond timestamps are supported in pandas version 2.0. If False, all timestamps are converted to datetime64 dtype.
- use_threadsbool, default
True
Whether to parallelize the conversion using multiple threads.
- deduplicate_objectsbool, default
True
Do not create multiple copies Python objects when created, to save on memory use. Conversion will be slower.
- ignore_metadatabool, default
False
If True, do not use the ‘pandas’ metadata to reconstruct the DataFrame index, if present
- safebool, default
True
For certain data types, a cast is needed in order to store the data in a pandas DataFrame or Series (e.g. timestamps are always stored as nanoseconds in pandas). This option controls whether it is a safe cast or not.
- split_blocksbool, default
False
If True, generate one internal “block” for each column when creating a pandas.DataFrame from a RecordBatch or Table. While this can temporarily reduce memory note that various pandas operations can trigger “consolidation” which may balloon memory use.
- self_destructbool, default
False
EXPERIMENTAL: If True, attempt to deallocate the originating Arrow memory while converting the Arrow object to pandas. If you use the object after calling to_pandas with this option it will crash your program.
Note that you may not see always memory usage improvements. For example, if multiple columns share an underlying allocation, memory can’t be freed until all columns are converted.
- maps_as_pydicts
str
, optional, default None Valid values are None, ‘lossy’, or ‘strict’. The default behavior (None), is to convert Arrow Map arrays to Python association lists (list-of-tuples) in the same order as the Arrow Map, as in [(key1, value1), (key2, value2), …].
If ‘lossy’ or ‘strict’, convert Arrow Map arrays to native Python dicts. This can change the ordering of (key, value) pairs, and will deduplicate multiple keys, resulting in a possible loss of data.
If ‘lossy’, this key deduplication results in a warning printed when detected. If ‘strict’, this instead results in an exception being raised when detected.
- types_mapperfunction, default
None
A function mapping a pyarrow DataType to a pandas ExtensionDtype. This can be used to override the default pandas type for conversion of built-in pyarrow types or in absence of pandas_metadata in the Table schema. The function receives a pyarrow DataType and is expected to return a pandas ExtensionDtype or
None
if the default conversion should be used for that type. If you have a dictionary mapping, you can passdict.get
as function.- coerce_temporal_nanosecondsbool, default
False
Only applicable to pandas version >= 2.0. A legacy option to coerce date32, date64, duration, and timestamp time units to nanoseconds when converting to pandas. This is the default behavior in pandas version 1.x. Set this option to True if you’d like to use this coercion when using pandas version >= 2.0 for backwards compatibility (not recommended otherwise).
- memory_pool
- Returns:
pandas.Series
orpandas.DataFrame
depending ontype
of object
Examples
>>> import pyarrow as pa >>> import pandas as pd
Convert a Table to pandas DataFrame:
>>> table = pa.table([ ... pa.array([2, 4, 5, 100]), ... pa.array(["Flamingo", "Horse", "Brittle stars", "Centipede"]) ... ], names=['n_legs', 'animals']) >>> table.to_pandas() n_legs animals 0 2 Flamingo 1 4 Horse 2 5 Brittle stars 3 100 Centipede >>> isinstance(table.to_pandas(), pd.DataFrame) True
Convert a RecordBatch to pandas DataFrame:
>>> import pyarrow as pa >>> n_legs = pa.array([2, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Horse", "Brittle stars", "Centipede"]) >>> batch = pa.record_batch([n_legs, animals], ... names=["n_legs", "animals"]) >>> batch pyarrow.RecordBatch n_legs: int64 animals: string ---- n_legs: [2,4,5,100] animals: ["Flamingo","Horse","Brittle stars","Centipede"] >>> batch.to_pandas() n_legs animals 0 2 Flamingo 1 4 Horse 2 5 Brittle stars 3 100 Centipede >>> isinstance(batch.to_pandas(), pd.DataFrame) True
Convert a Chunked Array to pandas Series:
>>> import pyarrow as pa >>> n_legs = pa.chunked_array([[2, 2, 4], [4, 5, 100]]) >>> n_legs.to_pandas() 0 2 1 2 2 4 3 4 4 5 5 100 dtype: int64 >>> isinstance(n_legs.to_pandas(), pd.Series) True
- to_pydict(self)#
Convert the Table or RecordBatch to a dict or OrderedDict.
- Returns:
Examples
Table (works similarly for RecordBatch)
>>> import pyarrow as pa >>> n_legs = pa.array([2, 2, 4, 4, 5, 100]) >>> animals = pa.array(["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", "Centipede"]) >>> table = pa.Table.from_arrays([n_legs, animals], names=["n_legs", "animals"]) >>> table.to_pydict() {'n_legs': [2, 2, 4, 4, 5, 100], 'animals': ['Flamingo', 'Parrot', ..., 'Centipede']}
- to_pylist(self)#
Convert the Table or RecordBatch to a list of rows / dictionaries.
- Returns:
Examples
Table (works similarly for RecordBatch)
>>> import pyarrow as pa >>> data = [[2, 4, 5, 100], ... ["Flamingo", "Horse", "Brittle stars", "Centipede"]] >>> table = pa.table(data, names=["n_legs", "animals"]) >>> table.to_pylist() [{'n_legs': 2, 'animals': 'Flamingo'}, {'n_legs': 4, 'animals': 'Horse'}, ...
- to_string(self, *, show_metadata=False, preview_cols=0)#
Return human-readable string representation of Table or RecordBatch.
- to_struct_array(self)#
Convert to a struct array.
- to_tensor(self, bool null_to_nan=False, bool row_major=True, MemoryPool memory_pool=None)#
Convert to a
Tensor
.RecordBatches that can be converted have fields of type signed or unsigned integer or float, including all bit-widths.
null_to_nan
isFalse
by default and this method will raise an error in case any nulls are present. RecordBatches with nulls can be converted withnull_to_nan
set toTrue
. In this case null values are converted toNaN
and integer type arrays are promoted to the appropriate float type.- Parameters:
Examples
>>> import pyarrow as pa >>> batch = pa.record_batch( ... [ ... pa.array([1, 2, 3, 4, None], type=pa.int32()), ... pa.array([10, 20, 30, 40, None], type=pa.float32()), ... ], names = ["a", "b"] ... )
>>> batch pyarrow.RecordBatch a: int32 b: float ---- a: [1,2,3,4,null] b: [10,20,30,40,null]
Convert a RecordBatch to row-major Tensor with null values written as ``NaN``s
>>> batch.to_tensor(null_to_nan=True) <pyarrow.Tensor> type: double shape: (5, 2) strides: (16, 8) >>> batch.to_tensor(null_to_nan=True).to_numpy() array([[ 1., 10.], [ 2., 20.], [ 3., 30.], [ 4., 40.], [nan, nan]])
Convert a RecordBatch to column-major Tensor
>>> batch.to_tensor(null_to_nan=True, row_major=False) <pyarrow.Tensor> type: double shape: (5, 2) strides: (8, 40) >>> batch.to_tensor(null_to_nan=True, row_major=False).to_numpy() array([[ 1., 10.], [ 2., 20.], [ 3., 30.], [ 4., 40.], [nan, nan]])
- validate(self, *, full=False)#
Perform validation checks. An exception is raised if validation fails.
By default only cheap validation checks are run. Pass full=True for thorough validation checks (potentially O(n)).