pyarrow.FixedSizeListType#
- class pyarrow.FixedSizeListType#
Bases:
DataType
Concrete class for fixed size list data types.
Examples
Create an instance of FixedSizeListType:
>>> import pyarrow as pa >>> pa.list_(pa.int32(), 2) FixedSizeListType(fixed_size_list<item: int32>[2])
- __init__(*args, **kwargs)#
Methods
__init__
(*args, **kwargs)equals
(self, other, *[, check_metadata])Return true if type is equivalent to passed value.
field
(self, i)- Parameters:
to_pandas_dtype
(self)Return the equivalent NumPy / Pandas dtype.
Attributes
Bit width for fixed width type.
Byte width for fixed width type.
If True, the number of expected buffers is only lower-bounded by num_buffers.
The size of the fixed size lists.
Number of data buffers required to construct Array type excluding children.
The number of child fields.
The field for list values.
The data type of large list values.
- bit_width#
Bit width for fixed width type.
Examples
>>> import pyarrow as pa >>> pa.int64() DataType(int64) >>> pa.int64().bit_width 64
- byte_width#
Byte width for fixed width type.
Examples
>>> import pyarrow as pa >>> pa.int64() DataType(int64) >>> pa.int64().byte_width 8
- equals(self, other, *, check_metadata=False)#
Return true if type is equivalent to passed value.
- Parameters:
- Returns:
- is_equalbool
Examples
>>> import pyarrow as pa >>> pa.int64().equals(pa.string()) False >>> pa.int64().equals(pa.int64()) True
- has_variadic_buffers#
If True, the number of expected buffers is only lower-bounded by num_buffers.
Examples
>>> import pyarrow as pa >>> pa.int64().has_variadic_buffers False >>> pa.string_view().has_variadic_buffers True
- id#
- list_size#
The size of the fixed size lists.
Examples
>>> import pyarrow as pa >>> pa.list_(pa.int32(), 2).list_size 2
- num_buffers#
Number of data buffers required to construct Array type excluding children.
Examples
>>> import pyarrow as pa >>> pa.int64().num_buffers 2 >>> pa.string().num_buffers 3
- num_fields#
The number of child fields.
Examples
>>> import pyarrow as pa >>> pa.int64() DataType(int64) >>> pa.int64().num_fields 0 >>> pa.list_(pa.string()) ListType(list<item: string>) >>> pa.list_(pa.string()).num_fields 1 >>> struct = pa.struct({'x': pa.int32(), 'y': pa.string()}) >>> struct.num_fields 2
- to_pandas_dtype(self)#
Return the equivalent NumPy / Pandas dtype.
Examples
>>> import pyarrow as pa >>> pa.int64().to_pandas_dtype() <class 'numpy.int64'>
- value_field#
The field for list values.
Examples
>>> import pyarrow as pa >>> pa.list_(pa.int32(), 2).value_field pyarrow.Field<item: int32>
- value_type#
The data type of large list values.
Examples
>>> import pyarrow as pa >>> pa.list_(pa.int32(), 2).value_type DataType(int32)