Quick Start Guide#
Arrow Java provides several building blocks. Data types describe the types of values; ValueVectors are sequences of typed values; fields describe the types of columns in tabular data; schemas describe a sequence of columns in tabular data, and VectorSchemaRoot represents tabular data. Arrow also provides readers and writers for loading data from and persisting data to storage.
Create a ValueVector#
ValueVectors represent a sequence of values of the same type. They are also known as “arrays” in the columnar format.
Example: create a vector of 32-bit integers representing [1, null, 2]
:
import org.apache.arrow.memory.BufferAllocator;
import org.apache.arrow.memory.RootAllocator;
import org.apache.arrow.vector.IntVector;
try(
BufferAllocator allocator = new RootAllocator();
IntVector intVector = new IntVector("fixed-size-primitive-layout", allocator);
){
intVector.allocateNew(3);
intVector.set(0,1);
intVector.setNull(1);
intVector.set(2,2);
intVector.setValueCount(3);
System.out.println("Vector created in memory: " + intVector);
}
Vector created in memory: [1, null, 2]
Example: create a vector of UTF-8 encoded strings representing ["one", "two", "three"]
:
import org.apache.arrow.memory.BufferAllocator;
import org.apache.arrow.memory.RootAllocator;
import org.apache.arrow.vector.VarCharVector;
try(
BufferAllocator allocator = new RootAllocator();
VarCharVector varCharVector = new VarCharVector("variable-size-primitive-layout", allocator);
){
varCharVector.allocateNew(3);
varCharVector.set(0, "one".getBytes());
varCharVector.set(1, "two".getBytes());
varCharVector.set(2, "three".getBytes());
varCharVector.setValueCount(3);
System.out.println("Vector created in memory: " + varCharVector);
}
Vector created in memory: [one, two, three]
Create a Field#
Fields are used to denote the particular columns of tabular data. They consist of a name, a data type, a flag indicating whether the column can have null values, and optional key-value metadata.
Example: create a field named “document” of string type:
import org.apache.arrow.vector.types.pojo.ArrowType;
import org.apache.arrow.vector.types.pojo.Field;
import org.apache.arrow.vector.types.pojo.FieldType;
import java.util.HashMap;
import java.util.Map;
Map<String, String> metadata = new HashMap<>();
metadata.put("A", "Id card");
metadata.put("B", "Passport");
metadata.put("C", "Visa");
Field document = new Field("document",
new FieldType(true, new ArrowType.Utf8(), /*dictionary*/ null, metadata),
/*children*/ null);
System.out.println("Field created: " + document + ", Metadata: " + document.getMetadata());
Field created: document: Utf8, Metadata: {A=Id card, B=Passport, C=Visa}
Create a Schema#
Schemas hold a sequence of fields together with some optional metadata.
Example: Create a schema describing datasets with two columns: an int32 column “A” and a UTF8-encoded string column “B”
import org.apache.arrow.vector.types.pojo.ArrowType;
import org.apache.arrow.vector.types.pojo.Field;
import org.apache.arrow.vector.types.pojo.FieldType;
import org.apache.arrow.vector.types.pojo.Schema;
import java.util.HashMap;
import java.util.Map;
import static java.util.Arrays.asList;
Map<String, String> metadata = new HashMap<>();
metadata.put("K1", "V1");
metadata.put("K2", "V2");
Field a = new Field("A", FieldType.nullable(new ArrowType.Int(32, true)), /*children*/ null);
Field b = new Field("B", FieldType.nullable(new ArrowType.Utf8()), /*children*/ null);
Schema schema = new Schema(asList(a, b), metadata);
System.out.println("Schema created: " + schema);
Schema created: Schema<A: Int(32, true), B: Utf8>(metadata: {K1=V1, K2=V2})
Create a VectorSchemaRoot#
A VectorSchemaRoot combines ValueVectors with a Schema to represent tabular data.
Example: Create a dataset of names (strings) and ages (32-bit signed integers).
import org.apache.arrow.memory.BufferAllocator;
import org.apache.arrow.memory.RootAllocator;
import org.apache.arrow.vector.IntVector;
import org.apache.arrow.vector.VarCharVector;
import org.apache.arrow.vector.VectorSchemaRoot;
import org.apache.arrow.vector.types.pojo.ArrowType;
import org.apache.arrow.vector.types.pojo.Field;
import org.apache.arrow.vector.types.pojo.FieldType;
import org.apache.arrow.vector.types.pojo.Schema;
import java.nio.charset.StandardCharsets;
import java.util.HashMap;
import java.util.Map;
import static java.util.Arrays.asList;
Field age = new Field("age",
FieldType.nullable(new ArrowType.Int(32, true)),
/*children*/null
);
Field name = new Field("name",
FieldType.nullable(new ArrowType.Utf8()),
/*children*/null
);
Schema schema = new Schema(asList(age, name), /*metadata*/ null);
try(
BufferAllocator allocator = new RootAllocator();
VectorSchemaRoot root = VectorSchemaRoot.create(schema, allocator);
IntVector ageVector = (IntVector) root.getVector("age");
VarCharVector nameVector = (VarCharVector) root.getVector("name");
){
ageVector.allocateNew(3);
ageVector.set(0, 10);
ageVector.set(1, 20);
ageVector.set(2, 30);
nameVector.allocateNew(3);
nameVector.set(0, "Dave".getBytes(StandardCharsets.UTF_8));
nameVector.set(1, "Peter".getBytes(StandardCharsets.UTF_8));
nameVector.set(2, "Mary".getBytes(StandardCharsets.UTF_8));
root.setRowCount(3);
System.out.println("VectorSchemaRoot created: \n" + root.contentToTSVString());
}
VectorSchemaRoot created:
age name
10 Dave
20 Peter
30 Mary
Interprocess Communication (IPC)#
Arrow data can be written to and read from disk, and both of these can be done in a streaming and/or random-access fashion depending on application requirements.
Write data to an arrow file
Example: Write the dataset from the previous example to an Arrow IPC file (random-access).
import org.apache.arrow.memory.BufferAllocator;
import org.apache.arrow.memory.RootAllocator;
import org.apache.arrow.vector.IntVector;
import org.apache.arrow.vector.VarCharVector;
import org.apache.arrow.vector.VectorSchemaRoot;
import org.apache.arrow.vector.ipc.ArrowFileWriter;
import org.apache.arrow.vector.types.pojo.ArrowType;
import org.apache.arrow.vector.types.pojo.Field;
import org.apache.arrow.vector.types.pojo.FieldType;
import org.apache.arrow.vector.types.pojo.Schema;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.nio.charset.StandardCharsets;
import java.util.HashMap;
import java.util.Map;
import static java.util.Arrays.asList;
Field age = new Field("age",
FieldType.nullable(new ArrowType.Int(32, true)),
/*children*/ null);
Field name = new Field("name",
FieldType.nullable(new ArrowType.Utf8()),
/*children*/ null);
Schema schema = new Schema(asList(age, name));
try(
BufferAllocator allocator = new RootAllocator();
VectorSchemaRoot root = VectorSchemaRoot.create(schema, allocator);
IntVector ageVector = (IntVector) root.getVector("age");
VarCharVector nameVector = (VarCharVector) root.getVector("name");
){
ageVector.allocateNew(3);
ageVector.set(0, 10);
ageVector.set(1, 20);
ageVector.set(2, 30);
nameVector.allocateNew(3);
nameVector.set(0, "Dave".getBytes(StandardCharsets.UTF_8));
nameVector.set(1, "Peter".getBytes(StandardCharsets.UTF_8));
nameVector.set(2, "Mary".getBytes(StandardCharsets.UTF_8));
root.setRowCount(3);
File file = new File("random_access_file.arrow");
try (
FileOutputStream fileOutputStream = new FileOutputStream(file);
ArrowFileWriter writer = new ArrowFileWriter(root, /*provider*/ null, fileOutputStream.getChannel());
) {
writer.start();
writer.writeBatch();
writer.end();
System.out.println("Record batches written: " + writer.getRecordBlocks().size()
+ ". Number of rows written: " + root.getRowCount());
} catch (IOException e) {
e.printStackTrace();
}
}
Record batches written: 1. Number of rows written: 3
Read data from an arrow file
Example: Read the dataset from the previous example from an Arrow IPC file (random-access).
import org.apache.arrow.memory.RootAllocator;
import org.apache.arrow.vector.ipc.ArrowFileReader;
import org.apache.arrow.vector.ipc.message.ArrowBlock;
import org.apache.arrow.vector.VectorSchemaRoot;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
try(
BufferAllocator allocator = new RootAllocator(Long.MAX_VALUE);
FileInputStream fileInputStream = new FileInputStream(new File("random_access_file.arrow"));
ArrowFileReader reader = new ArrowFileReader(fileInputStream.getChannel(), allocator);
){
System.out.println("Record batches in file: " + reader.getRecordBlocks().size());
for (ArrowBlock arrowBlock : reader.getRecordBlocks()) {
reader.loadRecordBatch(arrowBlock);
VectorSchemaRoot root = reader.getVectorSchemaRoot();
System.out.println("VectorSchemaRoot read: \n" + root.contentToTSVString());
}
} catch (IOException e) {
e.printStackTrace();
}
Record batches in file: 1
VectorSchemaRoot read:
age name
10 Dave
20 Peter
30 Mary
More examples available at Arrow Java Cookbook.